Neurorehabilitation and Neural Repair
نویسندگان
چکیده
Background. With diffusion-tensor imaging (DTi) it is possible to estimate the structural characteristics of fiber bundles in vivo. This study used DTi to infer damage to the corticospinal tract (CST) and relates this parameter to (a) the level of residual motor ability at least 1 year poststroke and (b) the outcome of intensive motor rehabilitation with constraintinduced movement therapy (CIMT). Objective. To explore the role of CST damage in recovery and CIMT efficacy. Methods. Ten patients with low-functioning hemiparesis were scanned and tested at baseline, before and after CIMT. Lesion overlap with the CST was indexed as reduced anisotropy compared with a CST variability map derived from 26 controls. Residual motor ability was measured through the Wolf Motor Function Test (WMFT) and the Motor Activity Log (MAL) acquired at baseline. CIMT benefit was assessed through the pre–post treatment comparison of WMFT and MAL performance. Results. Lesion overlap with the CST correlated with residual motor ability at baseline, with greater deficits observed in patients with more extended CST damage. Infarct volume showed no systematic association with residual motor ability. CIMT led to significant improvements in motor function but outcome was not associated with the extent of CST damage or infarct volume. Conclusion. The study gives in vivo support for the proposition that structural CST damage, not infarct volume, is a major predictor for residual functional ability in the chronic state. The results provide initial evidence for positive effects of CIMT in patients with varying, including more severe, CST damage.
منابع مشابه
Neurorehabilitation and Neural Repair a Strategy for Computer-assisted Mental Practice in Stroke Rehabilitation Neurorehabilitation and Neural Repair Additional Services and Information For
متن کامل
Neurological principles and rehabilitation of action disorders: computation, anatomy, and physiology (CAP) model.
This chapter outlines the basic computational, anatomical, and physiological (CAP) principles underlying upper-limb actions, such as reaching for a cup and grasping it or picking up a key, inserting it into a lock, and turning it.
متن کاملNeural internet: Web surfing with brain potentials for the completely paralyzed.
Neural Internet is a new technological advancement in brain-computer interface research, which enables locked-in patients to operate a Web browser directly with their brain potentials. Neural Internet was successfully tested with a locked-in patient diagnosed with amyotrophic lateral sclerosis rendering him the first paralyzed person to surf the Internet solely by regulating his electrical brai...
متن کاملRetraction of "Effects of High-Frequency Repetitive Transcranial Magnetic Stimulation on Motor and Gait Improvement in Incomplete Spinal Cord Injury Patients".
Kumru H, Benito J, Murillo N, et al. Effects of high-frequency repetitive transcranial magnetic stimulation on motor and gait improvement in incomplete spinal cord injury patients. Neurorehabil & Neural Repair 2013;27:421-429. Original DOI: 10.1177/1545968312471901.
متن کاملWhat do motor "recovery" and "compensation" mean in patients following stroke?
There is a lack of consistency among researchers and clinicians in the use of terminology that describes changes in motor ability following neurological injury. Specifically, the terms and definitions of motor compensation and motor recovery have been used in different ways, which is a potential barrier to interdisciplinary communication. This Point of View describes the problem and offers a so...
متن کامل